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There is considerable interest within the fixed- and rotary-wing research 
communities as to discovering how fixed- and rotary-wing trailed tip vortices might 
be modified or controlled.  The reasons for attempting such vortical flow control are 
many but success to date has been very modest.  This is primarily the case because 
the vortical flow physics are still not adequately understood.  A new analytic model 
describing the flow behavior resulting from pulsed or periodic disruption to line 
vortices is described.  Such vortex filament disruption is manifested in three 
different forms: spatial cuts or breaks, embedded inner core negative vorticity, 
and/or sinusoidal varying circulation.  These are three possible strategies by which 
vortex filament strength and geometry can perhaps be modified through passive or 
active control mechanisms.  Finally, an additional analysis is presented that 
examines the feasibility of destabilizing vortical structures, thereby representing a 
fourth potential approach for active flow control.  The presented work describes a 
wide array of unsteady flow phenomena that are highly pertinent to the question of 
active control of trailed rotary- and fixed-wing vortices.    

Nomenclature 
 
r Radial coordinate, origin at filament axis, m 

! 

r
•  Nondimensional radial coordinate, 

! 

r
•

= r rc0A  

! 

rc0  “Finite core” vortex filament core size radius (at time equal to zero), m 
Re Vortex Reynolds number, 

! 

Re = " #  
s Axial distance of filament breakpoint (time equal zero) from origin, m 
t Time, sec 

! 

t
•  Nondimensional time parameter, 

! 

t
•

= "t rc0A
2  

! 

V  Velocity vector, cylindrical coordinates, 

! 

V = vr v" vz[ ] , m/sec 

! 

Vp Finite core vortex axial flow “wave front” propagation velocity, m/sec 
z Axial (along vortex filament axis) coordinate, origin at intersection of filament segments' plane of 

symmetry and filament axis, m 

! 

z
•  Nondimensional axial coordinate, 

! 

z
•

= z rc0A  

!  Vortex filament initial circulation strength, m2/sec 

!  Vortex circulation, m2/sec 
!  Kinematic viscosity, m2/sec 
!  Angular coordinate, radians 

! 

"  Vorticity vector, 

! 

" = "r "# "z[ ] , 1/sec 
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I. Introduction 
 

RAILED tip vortex filament “modification” through various notional passive and active control 
schemes, to diffuse or otherwise alter the vortex, has long been the elusive goal of numerous fixed- and 

rotary-wing aeronautics researchers.  The capability for such vortex modification is anticipated to yield a 
number of benefits including aerodynamic performance improvements, noise reduction, and airframe 
vibration improvements, e.g. Refs. 1-6.  The reasons for attempting such vortical flow control are many, 
but success to date has been very modest.  This is the case largely because the vortical flow physics are still 
not adequately understood.   

 
A new analytic model describing the flow behavior resulting from the application of pulsed or periodic 

trains of either discrete variable circulation, spatial cuts to, and/or embedded finite regions of negative 
vorticity in the inner core of, vortex filaments is described.  Application of such variable circulation, spatial 
cuts and/or injection of embedded negative vorticity are three possible strategies by which vortex filament 
strength and geometry can perhaps be modified through passive or active control mechanisms, Fig. 1.  The 
analysis, having laminar origins, relies upon the artifice of the constant eddy viscosity 
assumption/hypothesis of Squires (Ref. 7 and more recently, e.g., Ref. 8 for similar application of this 
assumption to the study of rotor vortices) to extend the analysis results to turbulent vortices.  Further, the 
analysis is founded upon the study of line vortices and not trailed vortices.  As has been established since at 
least the work of Batchelor, Ref. 9, trailed vortices not only grow in terms of core radii with downstream 
distance but also have significant nonzero axial flow.  Line vortices, of course, exhibit neither feature.  
Despite these important differences, the extended analytical work employed in this paper, based on the 
initial work of Refs. 10-12, has many advantages for this proposed effort, being among other things not 
subject to numerical diffusion as might the case for computational fluid dynamics models, whereby the 
spatiotemporal evolution of vortex filaments can be studied.   

 
A wide array of unsteady flow phenomena is captured by this analysis.  It was originally derived to 

study axisymmetric vortex reconnection, and/or breakdown, subsequent to severe perpendicular/orthogonal 
body/blade-vortex interactions.  The nature of this original problem necessitated developing the inherent 
analysis capability to predict the influence of discrete changes in the vortex filament’s vorticity 
distributions.  This same capability provides great utility for the current problem.  The influence on the 
vortex spatiotemporal evolution, as a consequence of these vorticity distribution changes, are highly 
pertinent to the question of active vortical flow control of trailed vortices.   

 
 

 
Fig. 1 -- Modifying or Disrupting Trailed Tip Vortices (for Rotorcraft) 

T 



 
II. Past Investigations/Approaches to Vortical Flow Active Control 

 
For rotorcraft, for reducing blade-vortex interaction (BVI), there are two fundamental stratagems to 

pursue: first, increase the miss distance between the trailed vortex and the following rotor blade(s), and, 
second, somehow dissipate, or otherwise reduce the strength of the vortex at the location of the interaction.  
This work primarily discusses the implications of the later approach: modifying or disrupting vortices so as 
to reduce their potential for adversely interacting with, such as impulsively loading, rotor blades and/or 
other surfaces.   For BVI phenomena not entailing very close passage of the vortex near a rotor blade, 
vortex modification will only have a secondary influence, as the vortex-induced velocities will adhere to a 

! 

1 h  functionality, where 

! 

h  is the miss-distance, for all but the closest miss-distances to the vortex 
spanwise axis.  For these particular types of blade-vortex interactions increasing the blade miss-distance, by 
attempting to globally tailor the near-field rotor wake, is likely the only effective means of moderating 
overall interactions.   It is only those most severe of blade-vortex interactions wherein the blade comes in 
very close proximity to, or even physically intersects/collides with, the trailed vortex does it seem feasible 
that modifying the vortical structure (near or within the core) of the vortex might result in 
alleviation/moderation of the BVI event.   

 
As noted earlier, representative work in Refs. 1-6 detail numerous attempts to modify (actively and 

passively) rotary- and fixed-wing trailed tip vortices.  The anticipated benefits for modifying the vortical 
flow characteristics for these trailed vortices ranges from blade-vortex-interaction noise, vibration, and load 
reduction for rotorcraft to wake hazard alleviation for fixed-wing aircraft.   Table 1 summarizes, and Fig. 
2a-g depicts, some of the various flow control approaches studied to date and their possible underlying 
vortical flow mechanisms.  In many cases, the vortical flow structure of the rotor and wing trailed vortices 
have been successfully modified through several of these approaches, as demonstrated both analytically 
and experimentally.   However, in most cases, such vortical flow control has been found to be either 
unreliable, inconsistent, or, alternatively, requires too large of a performance penalty to be successfully 
implemented on an actual flight vehicle.   Additionally, previous work has suffered from a lack of robust 
metrics and criteria for defining/assessing success in vortex modification or disruption.  Typically, 
researchers in the past have focused on a general qualitative assessment of the ability to engender trailing 
vortex core growth and/or reductions in maximum tangential velocity.   Only rarely has the question of the 
“extent” and “persistence” of such vortex modifications been considered.  The current work seeks to define 
more rigorous metrics for vortex modification and disruption, which inherently take into account questions 
of extensiveness and persistence of changes made by vortical flow control.   

 
 
 
Table 1 – Vortical Flow Control Strategies Noted in the Literature and their Possible Mechanisms 

that could be simulated by Current Analysis 
 

Flow Control Approach Spatial “Cut” or 
“Break” 

Sinusoidal 
Varying 

Circulation 

Embedded 
Vorticity 

Excitation or 
Destabilization 

     
Spanwise Blowing X  X X 
“Synthetic-Jets”   X X 
“Spoilers” X  X X 
Vortex Generators   X X 
“Sub-wings”   X X 
Blade Tip Modification X  X X 
Active Elevons  X  X 
Individual Blade Control  X  X 
Active, or “Free,” Tips X X  X 

 
 



(a) (b) 

(c)  (d) 

  (e) (f)  (g) 
 

Fig. 2 – Different Actuator Approaches to Rotor Vortical Flow Control: (a) Spanwise Blowing, (b) 
“Synthetic-Jet” or “Zero-Mass” Actuator, (c) Spoilers, (d) Active Elevons, (e) IBC, (f) Stub-wings, 

and (g) Active/Free Tips 
 
 
In all of the above cases, there appears to be two fundamental, though not necessarily mutually 

exclusive, vortical flow control approaches being proposed by the research community for near-field (or, 
rather, early wake age in the case of rotor tip vortices) vortex modification/disruption.  The first 
fundamental approach is where the “bulk properties” of the vortex are modified.  In other words, the vortex 
strength and geometry is somehow directly modified during early roll-up or trailing from the rotor or wing.  
The second fundamental approach seeks to somehow destabilize or otherwise excite the trailed vortices to 
have them transition from one (basic) flow state to another, notionally more benign, flow state through 
either flow instability (i.e. vortex breakdown) or laminar-to-turbulent transition mechanisms.  Instigating 
vortex destabilization is particularly appealing to investigators, as it seems to almost promise a “free lunch” 
approach to vortex modification.   But rarely questioned is the issue of destabilization to what?  What 
alternate flow state are these vortices being nudged towards?  Most full-scale rotor trailed tip vortices are 
undoubtedly already turbulent throughout most of their core structure.  Therefore, artificially attempting to 
effect vortex laminar-to-turbulent flow transition would seem to be a pointless exercise.  The alternate, in 
terms of notionally achievable flow states, is vortex breakdown, whereby large changes in vortex core size 
and strength, with corresponding axial flow stagnation points under a variety of circumstances can be 
suddenly manifested.  However, vortex breakdown is not universally considered a flow instability, per se.  
For example, Refs. 10-12 demonstrated that axisymmetric vortex breakdown can result from the same type 
of bulk property modifications as will be studied in this paper, without resorting to any form of generally 
recognized instability mechanism.   Irregardless, examples of both the “bulk property” and 
“destabilization” approaches will be studied in this paper, though the primary focus will be on the direct 
modification of vortex bulk properties through various general notional techniques of disrupting the 
vortices.   

 
 
 

III. Summary of Analytical Treatment 
 
References 10-12, examined the unsteady flow characteristics of “cut” vortex filaments with one or two 

breakpoints (Fig. 3).  This earlier work would suggest that vortex reconnection is re-established fairly 
quickly in terms of nondimensional time scales with only modest localized disruption of the vortex 
vorticity and circulation distributions.  This is an indirect testament to the difficulty of modifying vortex 
strength and geometry -- which, in part, is explanatory of the complementary empirical difficulties in 



accomplishing the self-same goal.  Nonetheless, the previous analytical work has provided some tantalizing 
clues as to the possibility of employing pulsed/periodic vortex disruptions (as implemented as vortex 
filament “cutting” with multiple (more than two) breakpoints or, alternatively, the injection of negative 
vorticity into the vortex inner core) yielding the desired vortex modifications.  Validation of this 
hypothesis, and consideration of the necessary and sufficient conditions for such radical vortex 
modifications is the subject of the current work.    
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Fig. 3 -- Vortex Core Size Spanwise Variation During Vortex Filament Reconnection (“parabolic” 
core with no axial flow prior to “cutting” and a single filament cut ((a) 
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t
•

= 0.01, (b) 
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t
•

= 0.05, and 
(c) ) 

 
 
A class of unsteady laminar flow problems called “moving boundary” problems has been exhaustively 

studied in the literature.  By assuming that 

! 

vr = vz = 0 , the Helmholtz vorticity equation, for axial vorticity, 
can be reduced to the well-known unsteady heat conduction equation (Ref. 13).  The Lamb-Oseen vortex 
solution (Ref. 14) is one member of this class of unsteady laminar flow problems.  It is proposed that a 
class of solution be defined by assuming that the radial velocity component, 

! 

vr , is not merely equal to zero 
but instead is proportional to the tangential velocity gradient with respect to the z-axis (Eq. 1).  (Note that if 
the tangential velocity gradient is zero, such as in the case of the Lamb-Oseen vortex, then the “moving 
boundary” class of problems is recaptured.)   
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The length scale factor, l , is a constant -- at least within a given discrete spatial region(s) -- that 

transforms the proportional relationship of Eq. 1 to the equivalence relationship of Eq. 2.  (The constant l  
has the unit of length - hence it being called a “length scale factor.”)  This is discussed in detail in Refs. 10-
12.   

 
Meanwhile, a second proportional relationship, based on flow continuity, can be defined for the axial 

velocity.   
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This in turn dictates that the vorticity can be related to the velocity components, via the divergence 
equations for vorticity.   
 

  

! 

vz = "l#z  
 

  

! 

vr = "l#r  
 (5a-b) 

 
Applying a length-scale factor causes the convective acceleration terms to cancel out the vortex 

stretching terms, thereby achieving the objective of reducing the Helmholtz equation to the unsteady heat 
conduction equation, e.g. (Eq. 6) for the axial vorticity.   
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It is important to note that the length-scale factor methodology yields solutions that are only 

approximate in nature.  Though the Helmholtz equation for axial vorticity is exactly satisfied, for the cases 
where 

! 

"r # 0 and 

! 

"# $ 0, i.e. non-columnar flow, the corresponding equations for the radial and 
azimuthal vorticity are satisfied only approximately.  More details as to the underlying general nature of the 
approximations and their consequences are given in Refs. 10 and 12.    

 
Four different approaches to pulsed or periodic disruption of vortex filament will be studied using the 

length scale factor analysis methodology: vortex disruption via “cutting,” disruption through periodic 
injection of flow with negative vorticity into the inner core of the vortex, sinusoidal varying vortex 
circulation, and vortex destabilization.  (The later analysis will be summarized in the Appendix.) This work 
is an extension of the “multiple breakpoint” and “finite-segment” vortex filament analysis presented in Ref. 
12.  Some representative results are presented in Figs. 4-6 showing the axial distribution (along the vortex 
filament axis) of enstrophy and vortex core size subject various pulsed/periodic disruptions to the line 
vortices.  It should be noted that among the parametric influences examined in this paper are the magnitude, 
frequency, and sequencing of such pulsed/periodic disruptions.  Therefore, as can be seen in Fig. 4, the 
vortex filament “ideal cuts” are not uniform in spacing between breakpoints.   Correspondingly, in Fig. 5, 
the embedded regions of negative vorticity in the vortex inner core are not uniform in spanwise expanse.   
Figure 6 shows illustrative examples of enstrophy and core size distributions due to sinusoidal variation of 
the vortex circulation along its span.   It is anticipated that such “tailoring” of pulsed/periodic trains of 
vortical flow disruption will be a key factor in maximizing the effectiveness of vortex modification.  
Finally, it is assumed that the localized ensemble of vortex disruptions analyzed is of small enough span, in 
terms of range of nondimensional axial coordinate, 

! 

z
• , that any axial variation of trailed vortex core size 

and strength can be ignored for the purposes of this study.   The analysis is limited to assuming initially 
zero axial flow along the vortex, which is not, in general, representative of trailed tip vortices.   
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Fig. 4 -- Disruption due of a Vortex Filament With Ideal “Cuts” with Multiple Breakpoints: (a) axial 
vorticity ( 0=

•
t ), (b) axial vorticity (

! 

t
•

= 0.03), and (c) vortex core size axial distributions (
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t
•

= 0.03) 
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Fig. 5 -- Disruption due to Multiple Embedded Regions of Negative Vorticity being Injected/Inserted 
into the Inner Core of the Vortex Filament: (a) axial vorticity ( 0=

•
t ), (b) axial vorticity (

! 

t
•

= 0.03), 
and (b) vortex core size axial distributions (

! 

t
•

= 0.03) 
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Fig. 6 -- Periodically Varying Circulation (

! 

M = 3, or 

! 

"•
= 1.67 , 

! 

"# $ 0.2 , and 

! 

t
•

= 0.01): (a) 
Enstrophy and (b) Vortex Core Size 

 
 
Any modification of the vortical flow, by any of the three approaches identified in this paper as to 

disrupting the vortex filament, must be considered “transitory.”  Inevitably, vortex filaments will reconnect 
as long as the filament breakpoints remain in close proximity to each and are not displaced by other self-
induction or other wake influences.  Modified velocity profiles will tend to evolve over time to the same 
asymptotic profiles.  Even vortex breakdown bubbles will tend to dissipate/collapse (unless sustained in 
some quasi-steady manner) as a consequence of viscous diffusion.  But, with appropriate control over 
magnitude and timing/duration, even transitory changes to vortex filament characteristics could potentially 
have a beneficial influence over a number of important aerodynamic and aeromechanic challenges such as 
blade-vortex-interaction noise and vibration reduction for rotorcraft.   

 
One of the key problems previous researchers have had in evaluating their vortical flow active control 

devices is the use of inconsistent and/or qualitative metrics defining “success” in modifying the vortical 
flow.  Typically, “success” has been defined in terms of increased vortex core size in conjunction with 
decreased peak swirl/tangential velocity.  These are perhaps necessary, but insufficient, criteria for 
successful modification/disruption (a.k.a “diffusion”) of rotor vortices.   For example, such criteria, in part 
or as a whole, do not account for nonzero vortex velocity components in addition to the swirl velocity.  
Further, such criteria do not consider the aggregate effect of vortex disruption – i.e. is the reduced swirl 
and/or increased core size a localized effect, with possible aggravated vortex characteristics removed from 
the localized improvement, or is the modification persistent and expansive in nature.  As will be discussed 
in the next section, two metrics will be defined/derived that embody the notion that “success” for rotor tip 
vortex modification or disruption (as related to bulk properties) can be defined in terms of reducing an 
aggregate measure (spatiotemporally integrated so as to yield a non-localized assessment) of the vortex 
total kinetic energy (and, therefore, the induced dynamic pressure).  Tying such metrics to the vortex total 
kinetic energy and dynamic pressure should yield physically meaningful insights into BVI reduction for 
close-passage interactions between trailed vortex filaments and following blades (where the induced 
velocity from the vortex can analogously be thought of like a transient response to a localized flow field 
disturbance).  Such a dynamic pressure analogy would be expected to breakdown if orthogonal 
blade/vortex collisions or “cutting” occurs.  In this latter case, the vortex vortical structure would be 
radically changed as a consequence of the orthogonal BVI event and the pre-collision vortex characteristics 
(modified or otherwise) may or may not be indicative of the severity of such strong interactions.   

 



 
IV. Performance Metrics for Vortex Modification/Disruption 

 
It is essential to define one or more performance metrics to assess the efficacy of various different 

strategies for vortex modification or disruption.  Two such metrics, 

! 

"V  and 

! 

"V , will be defined for 
evaluating the performance of the vortical flow control strategies studied in this paper.  The parameter 

! 

"V  
can be thought of as vortical flow control effectiveness and the parameter 

! 

"V  can be thought of a flow 
control efficiency metric.  Both parameters are defined in terms of the total kinetic energy, and, 
correspondingly, of the vortex-induced dynamic pressure, of the basic flow.  The modified and baseline 
vortices is spatiotemporally integrated across the prescribed limits: 

! 

0
+
" r " #

$ , 

! 

0 " t "T , and 

! 

"L 2 # z # L 2 .   Two of these limits reflect the design target spatial extent of the vortex modification in 
terms of axial span of the vortex initially modified, 

! 

L , as well as the design target persistence of the vortex 
modification, 

! 

T  (in terms of kinetic energy and dynamic pressure).  The greater the targeted extent and 
persistence of the vortex modification/disruption the greater the initial kinetic energy investment required.   
In the case of rotary-wing applications there is likely a strong coupling between the 

! 

T  and 

! 

L  design 
targets; in this case 

! 

L "O c( ) "O #R$ N( ) , or the extent of modification should be on the order of the rotor 
blade chord length, and, further, 

! 

T " 2# N$ , the vortex modification/disruption has to persist to at least 
the first (following) blade passage.  Refer to Fig. 7.  Left unanswered in this paper, though, is the question 
of flow control actuator “mechanical” efficiency.  Such mechanical efficiency is highly dependent upon the 
actuator design and its system integration.   

 
 

 
 
 

Fig. 7 – Extent, 

! 

L , and Persistence, 

! 

T , of Vortex Filament Modifications for Rotors 
 
 
The baseline vortex, unless otherwise specified, has a parabolic initial vorticity distribution (

! 

"A = 0  as 
defined in Ref. 12).  The first metric, vortex modification effectiveness, is defined by the expression  

 

! 

"V # "BV "MV  
 

Where  

! 

"BV = #rdrdzdt
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And  
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"V =" BV "MV  
 
Where  

! 

" BV = #rdrdz
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Further, given the above,  
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"V #
$V %1

&V %1
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" # v$
2

+ vr
2

+ vz
2  

 (7a-h) 
 

Note that the parameter

! 

" BV  has a simple analytical solution.  The higher the relative values of 
V

!  and 
V

!  
the better the particular vortical flow control strategy (and the parametric combination specifying that flow 
control).  There are no intrinsic upper or lower limits to 

V
!  and 

V
!  as currently formulated.   The majority 

of the discussion that follows will be centered on the estimated relative values of 
V

!  and 
V

!  through 
either vortex filament cutting, injection of negative vorticity into the vortex core, or periodic manipulation 
of the vortex circulation and/or core size.  The vortical flow control effectiveness and efficiency metrics are 
estimated via numerical integration and are not analytically solved for.   
 
 
 

V. Discussion of Results 
 
Four different approaches to pulsed or periodic disruption of vortex filaments, and the resulting vortex 

modification, will now be studied, in part, using the efficiency and effectiveness metrics presented in the 
last section.    

 
To put things in perspective, the time scale for these results is rather large when considering the possible 

influence of these vortex modification/disruption strategies for near-field rotary-wing applications such a 
blade-vortex interaction alleviation/moderation.  Given the general nature of the analysis, and the nonlinear 
functions inherent in it, it is very difficult to make flow predictions at very small nonzero values of time.   
From a practical matter, for the work performed herein, this cut-off is approximately around 

! 

t
•
" 0.007 , 

quite a small value in terms of nondimensional time.  In terms of actual units of time, though, this is on the 
order of tens of minutes for laminar flow and typically less than a minute for fully turbulent flow, where the 
effective turbulent viscosity can be an order of magnitude greater than the kinematic viscosity.   Looked at 
in another way, blade-vortex-interactions typically occur within 60 to 200 degrees of wake age, depending 
on whether the BVI event occurs on the advancing or retreating side of the rotor.  Therefore, such BVI 
events occur within fractions of seconds of release from the blade they’re trailed from.  There is, therefore, 



potentially a mismatch between the time scales in the analysis versus that for rotor BVI.  The analysis 
suffers from numerical stability issues at very small nonzero time scales (

! 

t
•

< 0.007).  This is somewhat 
disadvantageous, but from a practical sense does not have that much impact as, in general, an alternate 
asymptotic formula has been derived for the initial condition case, 

! 

t
•

= 0 .    
 
 

A. Vortex Modification via “Cutting” 
 
The work of Ref. 12 only considered the case of ideal “cuts” to vortex filaments, where the circulation 

in the intermediate region between breakpoints is zero.   This analysis has been extended to consider the 
cases of non-ideal “cuts,” or otherwise referred to as “breaks,” wherein the circulation in the intermediate 
region between “breakpoints” is not identically equal to zero but rather some nonzero fraction of the 
nominal vortex filament far-field circulation strength.  Such a representation of vortex filament “breaks” is 
likely more physically realistic than the case of ideal “cuts.”  Figure 8a-d presents a representative subset of 
single filament breaks for a number of different fractional circulation strengths between the vortex 
breakpoints.   
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Fig. 8 – Enstrophy Contour Time Trends (Non-ideal Cuts, a.k.a. “Breaks,” 

! 

s rc0 = 2 ): (a) residual 
circulation in the intermediate region, 2.0=!"" , (b) 4.0=!"" , (c) 6.0=!"" , (d) 

! 

" "# = 0.8  
 
 
Figure 9 illustrates the time evolution of the vortex filament kinetic energy as a function of time for the 

case of “cut” vortex filaments at fixed span between breakpoints, 

! 

s rc0 = 2 .   As anticipated as time 
increases the kinetic energy decreases as a consequence of vortex diffusion.  The kinetic energy, as a 
whole, is directly proportional to the sum total span relative to the ensemble length, 

! 

L , of the individual 
intermediate regions between filament breakpoints.    

 
 



 
 

Fig. 9 – Trend of Total Kinetic Energy Metric (
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) as a Function of 

Nondimensional Time 
 
 
Individual velocity component kinetic energy metrics are presented in Fig. 10a-c for a single non-ideal 

“break” (at fixed span between breakpoints, 

! 

s rc0 = 2 ) where the fraction of the circulation strength within 
the intermediate region between breakpoints is held (spanwise) constant at a range of values of 

! 

" "#     
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Fig. 10 – Individual Velocity Component Kinetic Energy Metrics with Respect to Nondimensional 

Time (Single Non-ideal “Break”): (a) Tangential (
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2

), (b) Radial (
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), (c) Axial (
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vz
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2

) 

 
 
Given this new capability of analyzing vortex filaments with physically more relevant “breaks,” the 

efficacy of such filament “breaking” is examined as to a possible means for modifying/disrupting a vortex 
in a beneficial manner so as to attenuate its dynamic pressure distribution.  Figure 11 presents the 
corresponding results of the vortex modification/disruption effectiveness and efficiency of single vortex 
filament “breaks” for a range of (constant) fractional circulation strengths between breakpoints.   

 
 



 
 

Fig. 11 – Efficiency and Effectiveness Trends (for Single Non-ideal Cuts, a.k.a. “Breaks”) 
 
 

B. Vortex Modification via Periodic Injection of Negative Vorticity 
 
An alternate approach to vortex modification is through vortex disruption via periodic 

injection/application of negative vorticity into the inner core of the vortex.  Such injection/embedding of 
incremental vorticity (in general either positive or negative) can be implemented such that either the 
circulation is reduced in a localized sense or is, alternatively, preserved.  Figure 12 shows the enstrophy 
distribution for a vortex filament with a single embedded region of negative vorticity (that embedded 
vorticity being described by the two parameters 

! 

"A  and 

! 

"A ) whereby the circulation is reduced in a 
localized sense.   

 
 

EN  

   

XM1 YM1, ZM1, ( )  

 
 ( 0=

•
t ) (

! 

t
•

= 0.04 ) 
Fig. 12 – Representative Enstrophy Distributions as a Function of Time for the Injection of a 

Single Embedded Region of Negative Vorticity (Reduced Circulation; 1.0!=A"  and 25.0=A! ) 
 



 
Figure 13 presents predicted results for the injection/insertion of a single region of embedded negative 

axial vorticity ( 1.0!=A"  and 25.0=A! ) of varying nondimensional span (

! 

1" s rc0 " 4 ).  As a 
consequence of the embedded inner core negative vorticity a localized reduction of vortex circulation 
results.  This in turn reduces the ensemble average of the vortex total kinetic energy and thereby resulting 
in an increasing vortex modification effectiveness metric with increasing span (and, therefore, total 
quantity) of the embedded region of negative vorticity.   

 
 

 
 

Fig. 13 – Influence of Embedded Negative Vorticity in the Inner Core (with no Vortex Filament 
Cuts/Breaks) as a Function of the Span of the Embedded Region 

 
 
The individual influence of vortex filament cutting and injection/insertion of negative vorticity into the 

vortex core appears to have only modest effectiveness as means of modifying/disrupting vortices.  But what 
of combined effects simultaneously applying the two vortical flow control approaches.  Earlier studies on 
vortex reconnection and breakdown phenomena, Refs. 10-12, would suggest that if the physical mechanism 
of effecting vortex filament cutting/breaking also engenders the generation/transfer of negative vorticity at 
or into the vortex inner core then vortex breakdown occurs during the course of the vortex reconnection 
process.   Instigation of such a vortex breakdown would likely radically reduce the total kinetic energy.  
The fact that such a vortex breakdown stems from a modification of the bulk properties of the vortex, rather 
than relying on some notional instability mechanism, provides hope that a reliable actuator mechanism 
might be devised.    

 
Figure 14 illustrates the effect of the combined vortex filament cutting (single ideal cut of 

! 

s rc0 = 2 ) 
with insertion of negative vorticity (a single region of 

! 

span r
c0

= 2 , 

! 

"A = #0.3, and 

! 

"A = 0.375) on the 
vortex core size and also shows the formation of a vortex breakdown bubble.  The localized increase vortex 
core size and the formation of a breakdown bubble have been previously predicted in Ref. 12.   
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Fig. 14 – Vortex Filament Cutting/Breaking “Seeded” with Negative Vorticity 
 
 
Figure 15 presents predicted vortex modification effectiveness and efficiency metric results, for a single 

ideal cut (

! 

s rc0 = 2 ) in conjunction with a single embedded region of negative vorticity (the span of which 
ranges from 

! 

0.5" span r
c0
" 2  and, further, 

! 

"A = #0.3, and 

! 

"A = 0.375).  (Note that the ensemble 

average is conducted over the temporal range of 

! 

0.01" t
•
" 0.05 rather than at 

! 

0 " t
•
" 0.04  as done 

previously.)  It is anticipated that the observed increase in core size and corresponding reduction in 
localized kinetic energy, Figs. 14 and 15, will be moderated somewhat with the implementation of non-
ideal cuts, or rather filament breaks, but that, in general, the relative trends observed should still be 
applicable.   

 
 

 
 

Fig. 15 – Vortex Modification Effectiveness and Efficiency as a Result of Combinations of Filament 
Cutting/Breaking and Application of Negative Vorticity 
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Therefore, it would appear that given sufficient span/magnitude of embedded negative vorticity, in 

conjunction with vortex filament cutting or breaking, that an additional augmentation of vortex 
modification can occur.  However, below a threshold level of negative vorticity (in terms of span), the 
effectiveness metric is lower than filament cutting/breaking applied by itself.  This augmentation in vortex 
modification effectiveness is primarily a result of inducing a significant region of vortex breakdown in the 
vortex filament, through the combined application of these two bulk property changes (as distinguished 
from vortex “destabilization”).  This notional approach to vortical flow control was found to be the most 
effective means of vortex modification or disruption studied in this paper.   

 
 

C. Vortex Modification via Periodically Varying Circulation 
 
Sinusoidal variations of vortex circulation along the filament axis can only be approximately modeled, 

or perhaps more correctly “simulated,” by the analysis employed in this paper.  The approximations 
entailed are fourfold.  First, though the circulation is periodic, the spanwise distribution is only an 
approximate sinusoid.  Second, the circulation is only varied within the spanwise limits within which the 
ensemble average is performed to define the effectiveness and efficiency metrics.  And, third, there can be 
“edge effects” depending upon how the circulation strength is specified at the spanwise limits employed in 
the ensemble average.  Fourth, and final, at the small, but nonzero, time value for which the temporal 
averaging is initiated, the radial and axial velocity components are subtracted out as “offset tares” so as to 
better simulate the anticipated physical flow entailed in the periodic variation of vortex circulation.   Figure 
16 presents some representative spanwise vortex circulation distributions as a function of the distributions 
nondimensional “wavelength,” 

! 

"• .  This nondimensional wavelength can be defined in terms of both the 
nominal sinusoid’s cycle count, 

! 

M , and the span of the ensemble region, 

! 

L , i.e. specifically, 

! 

"•
# L 2Mrc0 .   In Fig. 16, the circulation is varied peak-to-peak by 20%, i.e. 

! 

"# $ 0.2 .  Additionally, 
though the circulation varies approximately in a sinusoidal manner for 

! 

z < L 2 , for 

! 

z " L 2  the 
circulation is held constant at 

! 

" = 1+ #" 2 .  Finally, by way of a reminder, for all work presented in this 
paper, a single ensemble limit applies. i.e. 

! 

L = 10rc0 .  For a typical helicopter trailed tip vortex where the 
near-wake vortex core size radius ranges from 5 to 10% of the blade chord, 

! 

L  would, therefore, represent a 
span of a trailed tip vortex filament of approximately one-half to one chord length.  This in turn translates 
to an azimuth increment of the rotating blade of 2 to 4 degrees for the blade (at near the tip) to traverse a 
distance of 

! 

L .    
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Fig. 16 – Spanwise Circulation Distributions as a Function of Periodic “Wavelength (

! 

"# $ 0.2 ):” 
(a) 

! 

"•
= 5 (M=1), (b) 

! 

"•
= 2.5  (M=2), and (c) 

! 

"•
= 1.67  (M=3) 

 
 
Figure 17 presents representative results for the influence of periodically varying the vortex circulation 

(while insuring the “mean” spanwise circulation is kept constant) on the vortex modification/disruption 
effectiveness and efficiency parameters.  The magnitude of the circulation is modest, 

! 

"# $ 0.2 , i.e. an 
approximately 20% net variation in the vortex circulation, reflecting the necessity of maintaining mean 
blade lift for rotor trim.   The results of the simulated sinusoidal variation of the vortex circulation reveal 
that, if the mean (averaged across the axial span of the ensemble) circulation is kept approximately constant 
and equal to that of the baseline vortex, there is only a slight influence on the vortex modification 
effectiveness and efficiency parameters.  Further, what little effect is shown is more of a consequence of 
the “even” and “odd” nature of the wave number, 

! 

M , rather than the wavelength of the periodic circulation 
variation.  In Fig. 17 “odd” wave numbers have a slight beneficial influence.   This wave number influence, 
though, is anticipated to disappear with increasing axial span of ensemble used in the effectiveness and 
efficiency parameter estimation.  If the vortex circulation is not preserved, but on average shows a net 
reduction as compared to the baseline vortex than it is anticipated that greater values for the effectiveness 
and efficiency parameters would result.  Further, periodically varying the vortex circulation can be 
anticipated to influence not the vortex characteristics such as core size and maximum tangential velocity (as 
studied, in part, herein this paper) but will also strongly influence blade-miss-distance.  Reported instances 
of noise/vibration reduction using active blade control to periodically varying blade circulation, on the basis 
of this analysis, likely derive the majority of the observed benefits from adjusting the blade-miss-distance 
rather than some fundamental change in the vortex core characteristics.   

 

 
 

Fig. 17 – Effectiveness and Efficiency of Vortex Modification via Periodic Variation in Vortex 
Filament Circulation 



 
 
The above results represent only a preliminary investigation of various different strategies, and resulting 

estimates of effectiveness and efficiency, for “bulk property” vortical flow modification of line vortices.  
The next section will discuss the possibility of “destabilizing” the vortex.  Such “destabilization” can 
notionally occur for both baseline/unmodified and modified (such as those studies in the above discussion) 
vortices.  Because of the necessity for brevity only a limited study is performed of the potential of vortex 
destabilization fro the case of a vortex filament being subjected to a single ideal cut.   

 
 
 

D. Vortex Modification via “Destabilization” 
 
Figure 18 illustrates a localized region of flow wherein tangential “disturbance velocity” features, 

! 

ˆ v "
• , 

(given short-wavelength excitation) can be observed emerging from the basic flow for the case of a vortex 
filament with a single ideal cut.  The following discussion related to disturbance velocity predictions -- and 
the corresponding implications for destabilizing the vortex -- for modified or disrupted vortical flow builds 
off of the approximate analysis presented in the Appendix.  These localized disturbance velocity features 
exhibit “short-wavelength” increases and decreases in strength, as represented by varying the parameter 

! 

"  
in Fig. 18.  These disturbance velocity flow features are not revealed in the basic flow analytical solution 
for the vortex filaments (Ref. 12).  Consequently, the appearance and persistence of these small-scale 
features can be considered indicative of the general axisymmetric flow stability of these vortex filaments 
during a portion of their overall evolution with time.   Though the dominant “disturbance velocity” flow 
features observed are the swirling flow fluctuations noted in the intermediate region between vortex 
breakpoints, there are correspondingly some (comparatively minor) fluctuations in the radial and axial 
velocities, 

! 

ˆ v r
•  and 

! 

ˆ v z
• .  The Fig. 18 contour plots are presented for 

! 

t
•

= 0.1, with short-wavelength 
excitation where 

! 

" =#nt
•

=#mt
•

= 0, 

! 

"mn = 0 , 

! 

an = 0.0001, and 

! 

bn = 0.1 . The tangential disturbance 
velocity fluctuations predicted are extremely sensitive to the value specified for the parameter 

! 

an , the nth 
mode amplitude (refer to the Appendix for details).  This, in fact, limits the magnitude of 

! 

an  to small 
values, otherwise unrealistically steep (near-singular) gradients for the tangential disturbance velocities.  
Additional steps, as detailed in the Appendix, are also required to avoid near-singular behavior of the 
disturbance velocities.    
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Fig. 18 – Manifestation of Fluctuating Swirling Flow in Vortex Filament Intermediate Region, for a 

Single Ideal Cut and “parabolic” core ( 1.0=
•
t ) 

 
 
Figures 19 and 20 show the influence of “linear mode” (versus “exponential” mode) excitation on the 

representative case of a vortex filament with a single ideal cut.  As discussed in the Appendix, the vortical 
flow response to such linear modes is linearly proportional to the external excitation amplitudes.  Very 
strong, localized gradients of both axisymmetric and asymmetric distributions of disturbance velocity 
components are observed in Figs. 19 and 20.   Though the overall vortical flow response is time dependent 
(particularly at very small values of nondimensional time), refer to Fig. 21, in general such flow response 
cannot be characterized as being an instability in the classic sense as the growth of the disturbance 
velocities with time is not unbounded.   (Note that the top-of-center “breaks” observed in the azimuthal 
distribution are visualization software artifacts; this fact being highlighted for one of the distributions.)   
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Given these predictions of significant disturbance velocities permeating the vortical flow, the question 

arises as to whether these disturbances are unbounded with time, and therefore reflect a true instability 
being manifested in the flow, or are the disturbance velocities sufficiently damped or neutral so as not to 
radically influence the global structure of the vortical flow.  Figure 21 presents results for a global 
disturbance parameter, 

! 

" , based on the analysis presented in the Appendix, as a function of time that seeks 
to address this question in a preliminary sense.  As can be seen in Fig. 21 the disturbance parameter, 

! 

" , 
trend results, with respect to nondimensional, time are not easily to interpret.   (Again, Fig. 21 presents 
preliminary results for the disturbance parameter, 

! 

" , for the specific case of a vortex filament with a single 
ideal cut.)  Though there is a time dependency of the disturbance parameter it does not suggest the flow 
response to be unstable in a classic sense as the response is not unbounded with time.  This appears to be 
true for both “linear” and “exponential” modes.  It is important to emphasize, though, the limited scope of 
this particular investigation as only the single ideal cut case was examined versus the other alternate 
approaches to vortex modification/disruption noted earlier in the paper.   

 

 
 

Fig. 21 – Disturbance Parameter Trend with Nondimensional Time (Single Vortex Filament “Ideal 
Cut,” 

! 

s rc0 = 1) 



The analysis in the Appendix can be considered as a major advance in the understanding of the time 
evolution of vortices being subjected to major disruption and/or modification.  Previous basic flow 
analytical solutions (Refs. 10-12), although unsteady in nature, were not intended to predict these 
disturbance velocity components.   

 
 
 
 

Concluding Remarks 
 
Analytical solutions for the unsteady flow behavior of vortices being subjected to three different types 

of vortical flow disruption – vortex filament cutting, injection of negative vorticity into the inner vortex 
core, and periodic changes to the vortex circulation – have been detailed in this paper.  This work builds 
upon previous analytical investigations that have examined the role of initial vorticity distributions on the 
vortex reconnection and breakdown phenomena.  Most importantly, the paper discusses the relevance of 
the presented analytical work with respect to ongoing efforts by many researchers in the field to develop 
active control/dissipation of vortical structures – such as trying to enhance the decay of trailed wing-tip 
vortices of large commercial aircraft to minimize the occurrence of wake upset for such aircraft or, 
alternatively, modification or dissipation of rotorcraft blade tip vortices to minimize the adverse effects of 
blade vortex interaction.    

 
Among the key questions raised in this study is what are the proper metrics or parameters needed to 

define and measure “success” in vortical flow control.   Two such metrics are proposed in this paper.  
These metrics consider the “effectiveness” and “efficiency” of vortex modification while intrinsically 
accounting for the “extent” and “persistence” of such modification.   

 
Vortex modification, as suggested by this line vortex analysis, seems to be best effected by means of the 

combined application of vortex filament “cutting” or “breaking” and insertion/injection of negative 
vorticity into the vortex inner core.  Such combined application of vortex “bulk property” vortical flow 
control is predicted to yield significant reductions in localized vortex kinetic energy so as to potentially 
significantly moderate body/blade-vortex interactions and, therefore, effecting noise, vibration, and load 
reduction for rotary-wing platforms.    

 
Finally, a hypothesis, and associated approximate analytical treatment, is advanced wherein vortex 

filament “destabilization” can be studied.  An example analysis case is presented.  Both axisymmetric and 
asymmetric vortical flow (a.k.a “linear” and “exponential”) modes are revealed in the resulting three-
dimensional flow analysis.  In the example provided, the predicted disturbance velocities remain bounded 
with time and, therefore, do not exhibit classic flow instability.   Left to future work, though, is the question 
of the interdependence between such metrics as the presented “disturbance parameter” and some desired 
vortical flow end-state.    

 
The work in this paper is preliminary in nature, but, nonetheless, it is anticipated to provide meaningful 

insight into the development of future active vortical flow control devices/actuators.   
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Appendix – “Disturbance Velocity” Analysis 

 
The bulk of this paper considers the question of whether or not one of four general classes of vortex 

filament disruption can significantly modify a vortex for some finite period of time such that the net 
effective kinetic energy of the vortex is reduced below that of the baseline unmodified/undisrupted vortex.  
Such a transitory reduction in vortex kinetic energy is hypothesized to have potentially a positive influence 
on a variety of rotary- and fixed-wing flow phenomena, including blade-vortex interaction.  But most of 
this preceding analysis focused on the unsteady basic flow characteristics of the disrupted vortices and did 
not examine the overall stability characteristics of the flow.   The question unanswered is whether or not 
flow instabilities can be manifested as a result of the vortex disruptions such that the flow state of the 
destabilized vortex is beneficially predisposed to even further reductions in vortex kinetic energy than the 
flow state associated with the basic flow solution of the vortex.     

 
The analysis presented in this appendix examines the flow stability of the vortical flow associated with 

the four vortex modification/strategies examined in the main body of the paper.   Intrinsic to the analysis is 
a reinterpretation of the basic flow solution for the azimuthal vorticity production/dissipation mechanisms 
for the vortex reconnection problem.  The earlier work of Ref. 12 would suggest that the basic flow 
solution for the azimuthal vorticity component, stemming from consideration of the viscous Helmholtz 
vorticity transport equation, was only approximate in nature, even with making the a large Reynolds 
number assumption for the flow.   Though this is still the case for the basic flow solution presented, it did 
suggest that perhaps that the reason that solution did not fully satisfy the azimuthal vorticity transport 
equation was primarily a consequence of not modeling quasi-periodic (short-wavelength) disturbance 
velocities, particularly that of the tangential velocity component.   Therefore, the Ref. 12 basic flow 
solution, in this reinterpretation, could be considered an incomplete rather than approximate solution.  By 
formulating the flow problem to consider disturbance velocity components to the basic flow, a more 
complete (though still restricted to the large Reynolds number assumption) solution/analysis might be 
derived.  This new interpretation of the problem can be seen as fluctuations, as manifested by the 
disturbance velocities, between two different flow states as represented between proportionality and non-
proportionality between the azimuthal vorticity and the tangential velocity distributions.  The following 
analysis not only strives to derive such a more complete solution but also, as a consequence, yields a flow 



stability analytical model that addresses the question of flow destabilization as a direct result of the four 
general classes of vortex disruption/modification studied initially in the context of the basic flow solution.    

 
Revisiting the Helmholtz vorticity transport equation  
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 (8a-c) 
 
Previous work would show that only stable solutions exist for the heat conduction equation (e.g. Ref. 

13).  Therefore, there should be no vortical flow instabilities with respect to the vortex filament axial 
vorticity and tangential velocity components.  Further, as the radial vorticity solution nearly satisfies the 
heat conduction equation, it is unlikely that flow instabilities would be principally manifested as a 
consequence of the radial vorticity distribution.  There remains, however, the possibility that flow 
instabilities could be manifested in those portions of the flow dominated by the azimuthal vorticity.  This 
possibility will be examined more closely next.    

 
Equation 8c is simplified by first applying 

! 

" –symmetry and then being nondimensionalized.    
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Making, as noted in Ref. 12, the large Reynolds number assumption, Eq. 9 reduces to  
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Next, the velocity can be expressed as follows in terms of both an undisturbed, but unsteady, velocity 
solutions (defined in terms of 

! 

vr , 

! 

v" , and 

! 

vz  velocity components) and disturbance velocity components 
defined as in a similar manner to classic fluid flow stability theory, e.g. Refs. 15-16, by 

! 

ˆ v r , 

! 

ˆ v " , and 

! 

ˆ v z .   
 

! 

V = vr + ˆ v r v" + ˆ v " vz + ˆ v z[ ]  
 
In turn, that also implies (principally as a consequence of the length-scale factor methodology relating 

the axial and radial vorticity to the axial and radial velocity components) that the vorticity can be similarly 
expressed in terms of both undisturbed, by unsteady, solution and disturbance vorticity components.    

 

! 

" = "r + ˆ " r "# + ˆ " # "z + ˆ " z[ ]  
 
Substitution of the above disturbance expressions for the vorticity into the Helmholtz equations gives  
 

! 

vr
• + ˆ v r

•( ) "#$
•

"r
•

+
" ˆ # $

•

"r
•

% 

& 
' ' 

( 

) 
* * + vz

• + ˆ v z
•( ) "#$

•

"z
•

+
" ˆ # $

•

"z
•

% 

& 
' ' 

( 

) 
* * = #r

• + ˆ # r
•( ) "v$

•

"r
•

+
" ˆ v $

•

"r
•

% 

& 
' ' 

( 

) 
* * + #z

• + ˆ # z
•( ) "v$

•

"z
•

+
" ˆ v $

•

"z
•

% 

& 
' ' 

( 

) 
* *  

 
 (11) 
 
Next, in a similar manner as is done for classic stability theory, the basic flow (undisturbed and known) 

terms of Eq. 11 are subtracted out.  Consequently, the following approximate disturbance equation can be 
derived.   
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vr
• " ˆ # $

•

"r
•

+ vz
• " ˆ # $

•

"z
•
%#r

• " ˆ v $
•

"r
•
%#z

• " ˆ v $
•

"z
•

+ ˆ v r
• "#$

•

"r
•

+ ˆ v z
• "#$

•

"z
•
% ˆ # r

• "v$
•

"r
•
% ˆ # z

• "v$
•

"z
•

+ ˆ v r
• " ˆ # $

•

"r
•

+ ˆ v z
• " ˆ # $

•

"z
•
% ˆ # r

• " ˆ v $
•

"r
•
% ˆ # z

• " ˆ v $
•

"z
•
& 0

 

 (12a-c) 
 
Implied in the previously applied length scale factor methodology 
 

  

! 

vz = "l#z  
  

! 

vr = "l#r  
And  

  

! 

ˆ v z = "l ˆ # z  
  

! 

ˆ v r = "l ˆ # r  
 (13a-d) 
 

However, in the case of the tangential velocity and vorticity components, it can be assumed to follow 
that  
 

  

! 

v" # $l%"  
 

As noted above, the tangential velocity for the basic flow is not, in general, dependent upon the azimuthal 
vorticity, particularly for 

! 

t" 0 , within the range   

! 

"l # z # l .  But, however, for the tangential disturbance 
velocities it is assumed that  
 

  

! 

ˆ v " = #l ˆ $ "  
 (14a-b) 
 



Note the following nondimensionalization of the length scale factor: 
  

! 

l
•

= l rc0A .   Note, further, that 
definition and application of the length-scale factor(s) is dependent upon whether or not the basic flow is 
locally (axially) symmetrical or nonsymmetrical (as defined in the context of Ref. 12).‡    

 
Making the above substitutions yields  
 

  

! 

ˆ v r
• "#$

•

"r
•

+
1

l
•

"v$
•

"r
•

% 

& 
' ' 

( 

) 
* * + ˆ v z

• "#$
•

"z
•

+
1

l
•

"v$
•

"z
•

% 

& 
' ' 

( 

) 
* * + 0  

 (15) 
 
It is important to note that in Eq. 15 basic flow analytical solutions for 

! 

"#
•  and 

! 

v"
•  have been previously 

derived and reported in Ref. 12; therefore, only 

! 

ˆ v r
•  and 

! 

ˆ v z
•  remain to be solved for.  The resulting 

disturbance velocities to some degree can be considered self-excited oscillations between two different 
flow states (one where 

! 

v" #" $ constant , i.e. the basic flow, and the other flow state where 

! 

v" #" $ constant ) for regions of flow dominated by azimuthal vorticity.  This is analogous to the class of 
“resonant” type flow instabilities (Ref. 16).   

 
Differentiating the above equation while at the same time relating the disturbance velocity components 

to each other via the axisymmetric flow continuity equation, 

! 

ˆ v r
•

r
•

+" ˆ v r
• "r

•
+" ˆ v z

• "z
•

= 0 , yields  
 

! 

" ˆ v r
•

"r
•

+ A
" ˆ v r

•

"z
•

+ B ˆ v r
•
# 0  

 

! 

ˆ v z
•

= A ˆ v r
•  

Where 

  

! 

A " #
l

•$%&
• $r• +$v&

• $r•( )
l

•$%&
• $z• +$v&

• $z•( )
 

 
And  

! 

B "
1

r
•

+
#A

#z
•

 

Or  

                                     
‡  Specifically, local (symmetrical or nonsymmetrical) length scale factors can be defined, more generally, 
by a length scale function 

  

! 

l K( ) , such that  
 

  

! 

"#$ N ,i,% i ,roi ,ai ,bi ,r,z, t( ) = l N ,i,z( )h % i ,roi ,ai ,bi ,r,z, t( )  
 
And, further,  
 

! 

"# = $"# N ,i,% i ,roi ,ai ,bi ,r,z, t( )
i=1

N

&  

 
Where the function 

  

! 

h K( )  and the length-scale function, 
  

! 

l K( ) , and other associated functions are defined 
in the Ref. 8 work and can accommodate multiple breakpoints and a wide array of initial vorticity 
distributions.   
 



 

  

! 

B =
1

r
•
"

l
•#2$%

• #r
•#z

• +#2v%
• #r

•#z
•( )

l
•#$%

• #z
• +#v%

• #z
•( )

      +

l
•#$%

• #r
• +#v%

• #r
•( ) l

•#2$%
• # z

•( )
2

+#2v%
• # z

•( )
2& 

' 
( 

) 

* 
+ 

l
•#$%

• #z
• +#v%

• #z
•( )
2

 

 (16a-e) 
 

Where 

! 

A  and 

! 

B  are variable coefficients in the above first-order partial differential equation (PDE), e.g. 
Ref. 17, which are, in turn, based on known analytical solutions for 

! 

"#
•  and 

! 

v"
• .  It is an important to note 

that the use of the axisymmetric form of the continuity equation is not strictly valid.  There are anticipated 
to be periodic azimuthal variation of all three disturbance velocity components.   By employing the 
axisymmetric continuity equation, imposing, in particular, a non-azimuthal-variation of the tangential 
disturbance velocity results in effective source and sink distributions in the r-z plane for the radial and axial 
disturbance velocity components.  Such sources and sinks for 

! 

ˆ v r
•  and 

! 

ˆ v r
•  are periodic in time and out of 

phase with 

! 

v"
•  variation.   Further, this dictates the emergence of regions of very steep gradients in all three 

disturbance velocity components.  This inviscid-like source and sink flow behavior is only a “pseudo-
axisymmetric” approximation of the true vortical flow.  However, as will be seen later, from this initial 
formulation of the problem, an asymmetric extension of the approximate solution can be derived that more 
closely represents the actual physical flow.    

 
Given Eq. 16a-e, a solution for the disturbance azimuthal vorticity and tangential velocity can be 

derived, i.e.   
 

! 

ˆ " #
•

=
$ ˆ v r

•

$z
•
%
$ ˆ v z

•

$r
•  

And  

!
!
"

#
$
$
%

&
'=

•

•

•

•
••

z

v

r

v
v

rz

(

(

(

(
)

ˆˆ
ˆ l  

 (17a-b) 
 
At this point, the analysis of this paper departs somewhat from classic linear flow stability theory (i.e. 

assuming periodic infinitesimal excitation and decomposing the disturbance equation into a linear system 
which can then be studied by a variety of stability analysis techniques) and an alternative approach is 
presented in which it is attempted to approximately, though directly, solve for the disturbance velocities.    

 
The intent of the following analysis is to derive an approximation to Eq. 16 that allows the first order 

partial differential equation to become quasi-separable and then solve accordingly.  The first step in 
effecting the required approximation is to note the observation 

! 

A"1 r
•  for 

! 

r
•
" 0 and the region 

! 

z
•
" zw

•  (assuming a single ideal cut or other vortex filament disruption).   This can be approximately for 

two discrete regions within 

! 

z
•
" zw

• : an azimuthal vorticity dominated region (

! 

1" z
•
" zw

• ) where the 

basic flow solution has a singularity at the centerline of the vortex filament (as demonstrated in Ref. 10) 

and the tangential velocity dominated region ( 1!
•
z ).  For the azimuthal vorticity dominated region, 

! 

"#
•
$ f z

•( ) r
•  as 

! 

r
•
" 0 and, further, 

! 

"#
•

>> v#
• .  In this first case, 



! 

A"# $%&
• $r•( ) $%&

• $z•( ) "# # f z•( ) r
•( )
2' 

( 
) 

* 

+ 
, $f $z•( ) r

•' 
( 
) * 

+ 
, " 1 r

•( ) f $f $z•( )' 
( 
) * 

+ 
,  and so as 

asserted 

! 

A"1 r
• .  For tangential velocity dominated regions, 

! 

v"
•
# g z

•( )r•  as 

! 

r
•
" 0 and as 

! 

"#
•
$ 0 .  

For the second case 

! 

A"# $v%
• $r•( ) $v%

• $z•( ) "# g z•( ) $g $z•( )r•& 
' 
( ) 

* 
+ " #1 r•( ) g $g $z•( )& 

' 
( ) 

* 
+ .  The 

consequence of these observations is that Eq. 16a can be considered somewhat independently for the two 
identified flow regions.    

 

! 

" ˆ v r
•

"r
•

+ A
" ˆ v r

•

"z
•

+ B ˆ v r
• # 0

$

" ˆ v r
•

"r
•

+ A
" ˆ v r

•

"z
•

+
1

r
•

+
"A

"z
•
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& 
' 

( 

) 
* ̂  v r

• # 0

 

 (18) 
 
This equation must be subject to the following boundary conditions.   
 

0ˆ =
•
rv  For  0=

•
r  

 
0ˆ =

•
!v  For  0=

•
r  

 

0ˆ =
•
zv  For  ••

= wzz  

 
0ˆˆˆ !!!

•••
"vvv zr  For  !"

•
r  

 

!<<""
••
zv#ˆ  For  ••

= wzz  

 (19a-e) 
 
The first two boundary conditions are critical.  They are especially difficult to satisfy, as the basic flow 
azimuthal vorticity solution has a singularity at 0=

•
r  for those regions of the flow seeing significant 

azimuthal vorticity production.   
 
For regions of flow near the local plane of symmetry -- in this case of a single ideal vortex filament cut, 

! 

z
•

= 0  -- 

! 

A" 0 as 0=
•
r  for small values of nondimensional time.  Or, more specifically, a cutoff 

condition, 

! 

A
r"0

+ <# , can be applied to the disturbance equation such that the following holds  
 

! 

" ˆ v r
•

"r
•

+ A
" ˆ v r

•

"z
•

+
1

r
•

+
"A

"z
•

# 

$ 
% 

& 

' 
( ̂  v r

• ) 0

*

" ˆ v r
•

"r
•

+
ˆ v r
•

r
•
) 0

 

 (20) 
Which has only two solutions  
 

! 

ˆ v r
•
"1 r

•   Or 

! 

ˆ v r
•

= 0  
 (21) 



 
The first solution violates the boundary conditions noted above -- specifically, 

! 

ˆ v r
•

= 0  at 0=
•
r  for all 

! 

z
•  

and 

! 

t
• .  Therefore, the second solution must be the valid solution for the discrete regions (axially) of flow 

where 

! 

A" 0 as 0=
•
r , or alternatively 

! 

A
r"0

+ <# .   

Assume a quasi-separable function form of the radial disturbance velocity such that 

! 

ˆ v r
• = f r

•( )g A( ) 

and, correspondingly, 

! 

g A( ) = h r•
,z

•
, t

•( ) " # r
•( )k z•

, t
•( ), where from the earlier functional analysis 

discussion 

! 

" r
•( ) # 1 r

•  and 

! 

k z
•
, t

•( ) "O 1( ) .  Therefore  
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+
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+
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"r
•

+
1
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*
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"f

"r
•

+
A

g

"g

"z
•

+
"A

"z
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+
1

+

"+

"r
•
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•
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1

r
•

, 
- 
. 

/ 
0 
1 
) 0

 

 (22) 
 
Note that when 

! 

k z
•
, t

•( ) " 1  then the radial and axial disturbance velocities are receiving significant inflow 

and outflow from the effective sink and source terms (stemming from the “pseudo-axisymmetric” 
approximation imposed on the problem) fed by the tangential disturbance velocity variation with time.    
 

Equation 22 reduces the problem down to following first-order partial differential equation, which is 
solvable by the separation of variables method  
 

! 

1

f

"f

"r•
+
A
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"z•
+
"A

"z
•
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Where, given the previous functional analysis/discussion  
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 (23a-b) 
 
The resulting two ordinary differential equations are  
 

! 

1

f

"f

"r•
+ b # 0

$

f r
•( ) = e%br

•

 

And  



! 

A

g

"g

"z•
+
"A

"z•
# b $ 0

%

g A( ) =
a

A
e

b A( )dz•&

 

 (24a-b) 
 
Therefore, the corresponding solutions to Eq. 16a are  

 

! 

ˆ v r
• "

a

A
e
#br

•+ b A( )dz
•$  For ••

!! wzz0  and 

! 

A
r"0

+ #$  

 
0ˆ !

•
rv  For ••

>
w
zz  or 

! 

A
r"0

+ <#  

 (25a-b) 
 

The “constants,” a  and b , in Eq. 25a-b are arbitrary functions of time.  In keeping with classic flow 
linear stability analysis, it can be assumed that, in general  

 

! 

a = an 1+ cos"nt
•( )

n=1

#

$  And 

! 

b = 1+ bm cos "mt
• +#mn( )

m=1

$

%  

 
Or, as studied in this paper, a simpler two-mode formulation of 

! 

a = a1 1+ cos"1t
•( )  and 

! 

b = 1+ b2 cos "2t
• +#21( )  is employed.  In this case 

! 

an , 

! 

bm , 

! 

"n , and 

! 

"m  are the (nth and mth) modal 

amplitudes and frequencies of interest.  Additionally, 

! 

"mn  is the phase angle offset for the mth mode with 
respect to the nth mode.  Two observations should be noted for the quasi-periodic expressions assumed for 
a  and b .  First, the predicted fluctuation should be between the basic flow state and a second alternate 
flow state.  Therefore the fluctuations should never result in flow behavior outside of those two flow state 
extremes; i.e. this can be interpreted as 

! 

a " 0 for all 

! 

t
• .  Second, the quasi-periodic expression for b  is 

consistent with the earlier assumption that 

! 

k z
•
, t

•( ) "O 1( )  if the values of values of a  and b are assumed 

to be typically very small, on the order of 

! 

0 " a " 0.001 and 

! 

0 " b " 0.1.   (The restriction on b  being very 
small can be relaxed with the above solution being extended from its’ “pseudo-axisymmetric” origin and 
taking on a more asymmetric character by allowing periodic variation of the velocity components along the 
filament azimuth.)  Additionally, it should be noted that there are also important issues regarding the usage 
of the parameter A  as to dealing with (near)-singularities in its estimation.   First, a “cutoff” constant, 

! 

" , 
has been included in the above equation; typically, as used in this paper, 

! 

" # 0.01.  Second, as the 
parameter A  (the axial vorticity and tangential velocity “forcing” function) can be expressed as 

21 AAA != , a nominator and denominator term, refer to Eq. 16c, therefore, consequently, the following 
“de-singularization” approach can be taken where if 11 !"A  or 22 !"A  then, correspondingly, 

( )111 AsignA !=  or ( )222 AsignA !=  -- where, unless otherwise stated in this paper, 1.021 ==!! .  To 
reiterate to emphasize the point, the constants ! , 1! , and 2!  are somewhat arbitrary in the assignment of 
their values and are employed solely for the purposes of de-singularizing the solution, Eq. 25a.  The 
primary instability (tangential velocity disturbances) observed in the analysis, for an initially parabolic 
vorticity distribution with a single ideal cut in the vortex filament, are manifested as clockwise and counter-
clockwise rotating toroidal structures of swirling flow axially aligned along, and within, the vortex filament 
inner core.  There are also indications of minor instabilities with respect to the radial and axial disturbance 
velocities, but these are considerably less sensitive to excitation than the instabilities observed in the 
tangential velocity profiles.    

 



Substituting Eq. 25a-b into Eqs. 16b and 17b yields, for 

! 

0 " z
•
" zw

•  and 

! 

A
r"0

+ #$ , solutions for the 

axial and tangential disturbance velocities.   
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Or, alternatively, for 

! 

z
•

> zw
•  or 

! 

A
r"0

+ <# , it is required that  

 

! 

ˆ v z
•
" 0  And  

! 

ˆ v "
•
# 0  

 (26a-d) 
 
As noted before, the above approximate analysis does not incorporate the influence of azimuthal 

variations in the three disturbance velocity components.  One of the consequences of this approximation is 
the appearance of effective sources and sinks in the r-z plane in the vortical flow.  A simple refined-
approximation correction can be made to the above expressions to partially account for such azimuthal 
variations.  First, assume that the radial and axial disturbance velocities vary azimuthally, such that    

 

! 

ˆ v zc
• = ˆ v z

•
cos k" +#( )  

! 

ˆ v rc

• = ˆ v r
•

cos k" +#( )  
 (27a-b) 

 
Applying the full continuity equation, using the above “corrected” radial and axial disturbance velocity 

expressions gives  
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 (28) 
 

Now the uncorrected and corrected tangential disturbance velocities can be related to each other by the 
expression  
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Substituting Eq. 28 into Eq. 29 yields  
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 (30) 

 
Given Eqs. 17b and 30, the modal number 

! 

k  can be solved for, recognizing that it is, by definition, an 
integer, yielding  
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 (31) 

Let the following parameter be defined  
 

! 

x =
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•( ) " ˆ v z

• "r
•
#" ˆ v r

• "z
•( )  

 (32) 
 
Then the effective modal number and phase angle, 

! 

k  and 

! 

" , can be solved for, given Eqs. 31 and 32, 
when recognizing that k  is an integer and the phase angle offset is a small value.   

 

! 

k " x[ ]   If  

! 

x[ ] " Kmax  
 

! 

k = Kmax  If  

! 

x[ ] > Kmax  
 
And  

! 

y " 4#k k x( )
2
$1

% 
& 
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) 
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! 

" #
1

2
asin y( )  If 

! 

y " 1  

 

! 

" #
$

4
sign y( )  If 

! 

y > 1  

 (33a-e) 
 
Where 

! 

x[ ]  is the “nearest integer” function, or 

! 

nint x( ) , also known as the “Round” function, 

! 

Round x[ ] , which takes a real number and returns the closest integer to the original real number; if x  is 
equally close to both integers then the function returns the even-numbered integer.  Note that 

! 

Kmax  is a 
prescribed arbitrary maximum mode number.  Further, it should be assumed that 

! 

Kmax  is even and 
therefore symmetric.  The above analysis, with and without azimuthal corrections, provides a first-order 
insight into the spatiotemporal distribution of vortex disturbance velocities subjected to modal excitation.  
When 

! 

k  is even the mode and disturbance velocity distributions are symmetric; when 

! 

k  is odd then the 
mode and disturbance velocities are asymmetric. This approximate disturbance velocity analysis is 
applicable to a wide range of (laminar) basic flow solutions for vortical flow.   

 
Finally, one means of assessing the relative flow “stability” of the vortex filament as a function of time 

and initial conditions can be provided by the parameter, 

! 

" , defined below.    
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 (34a-b) 
 
Note the analogous nature of the aggregate (instability) disturbance parameter, 

! 

" , defined in Eq. 34a-b, 
with respect to the effectiveness and efficiency parameters, 

! 

"V  and 

! 

"V  noted earlier in the main body of 
the paper.   The current suggested form of the global (instability) disturbance parameter, 

! 

" , takes into 
account only two discrete arbitrary modes at a time -- the nth and mth modes -- rather than some prescribed 
distribution of modes.   

 
An approximate relationship for the disturbance parameter, used in the main body of the paper, is given 

by the expression  
 
 

! 

˜ " •

a1

2
# e

2 1 A( )dz•$ %r•( ) 1

A
2

&A

&z•
%1

' 

( 
) 

* 

+ 
, %

1

A
2

&A

&r•

' 

( 
) 

* 

+ 
, dz

•$ +1

' 

( 
) 

* 

+ 
, 

2

+
1

A
2

+1

- 

. 
/ 

0 / 

1 

2 
/ 

3 / 
 

 (35) 
 

Given the above expression, the disturbance parameter,

! 

" , can be normalized (approximately so) by the 
excitation amplitude, 1a , for one or two dominant excitation modes such that 

! 

" a1
2
# constant  for a given 

small range of 

! 

t
• .    

 
An interesting question to consider is whether or not Eqs.  27a-b and 28 genuinely represent unstable 

versus stable or neutral flow.  As there is no unconstrained amplification of the 

! 

a  parameter (or, rather, the 

! 

an , nth mode, amplitude) excitation with time, this would suggest that the flow, for 

! 

b " 1, is stable or 
neutral.   If, on the other hand, 

! 

b <<1 for some finite period of time then the approximate solution would 
suggest the possibility, at least, of unconstrained disturbance velocities at the outer radial regions of the 
vortex filament.   

 


